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Computer Analysis of Moving Polygonal Images

J. K. AGGARWAL, MEMBER, IEEE, AND RICHARD 0. DUDA, MEMBER, IEEE

Abstract-A general mathematical model is developed as an

idealization of the problem of determining cloud motions from satel-
lite pictures. The model consists of superimposed planes of rigid
moving polygons. The problem is to determine from a sequence of
scenes the linear and angular velocities of the figures, and to de-
compose the scene into its component figures. Study of the model
reveals a number of fundamental relations that form the basis for
an analysis program. In particular, a systematic anaylsis is given of
the topological changes that can occur when overlapping figures move
together or apart. A computer program based on these results is
described, and experimental results are presented.

Index Terms-Change detection, cloud motion, motion, moving
images, occlusion, overlapping figures, pattern recognition, polygonal
figures, scene analysis, topological changes.

I. INTRODUCTION

THIS PAPER describes an investigation of a particular
problem in the analysis of pictures of moving two-

dimensional objects. The general problem of detecting
significant changes in a sequence of pictures is a difficult
one. Although Ulstad [1] traces its history back to 1920,
most of the work in this area is relatively recent, depend-
ing as it does on digital image processing. In particular,
considerable attention has been devoted to the determina-
tion of cloud motions from digitized satellite photographs
[2}-[4]. Since that problem served to motivate the current
investigation, some of its characteristics will be described
briefly.

In a typical satellite photograph the regions of cloud
cover are considerably brighter than the background,
whether the clouds are low stratus layers or high cirrus
layers. Although cloud velocities in any local region are

relatively constant, nonuniform patterns of motion show
up over larger areas. The cloud velocity fields are closely
related to wind velocity fields, and major changes in wind
speed and direction occur over large areas, such as the mid-
Pacific region. The purpose of deriving cloud motions from
satellite photographs is to obtain these wind velocity
fields.
The basic technique used in programs that track cloud

motions is cross correlation. In some programs the cross

correlation is done directly, small local zones being matched
from one picture to the next [2], [3]. With other programs
the pictures are first clustered to find brightness centers,
and these centers are matched from one picture to the next
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[4]. In either case, good results can be obtained provided
that the pictures are properly registered, that clouds are
not in a state of rapid formation or dissipation, and that
there is only one layer of clouds in any given area.

Unfortunately, it is not at all uncommon for several
cloud layers to be present at once, and each layer can be
moving with its own speed and in its own direction. This
invalidates the use of cross correlation, unless the various
layers can somehow be separated before successive images
are matched. If the photographs are viewed individually,
it is surprisingly difficult to distinguish between the various
layers. In particular, the brightness differences between
different layers are quite small, and one must discriminate
on the basis of rather subtle shape and texture information.
Viewed in a time-lapse sequence, however, the various
layers are much more clearly distinguishable, the joint
motions of clouds in a given layer often being quite strik-
ing. This paper is primarily concerned with ways of ex-
tracting, from a sequence of pictures, the information im-
plicit in these joint motions.
Both to avoid the many complications introduced by

the use of real imagery and to obtain somewhat greater
generality, we have investigated an idealized model of this
problem. The model, defined precisely in the next section,
can be understood intuitively by imagining a black back-
ground, overlaid by a number of transparent sheets, upon
which opaque white polygons have been drawn. As the
sheets are translated (and perhaps rotated), the exposed
and hidden parts of the different polygons shift and change,
but the figures on any given sheet maintain their shapes
and relative positions. The basic problem is to derive a
description of the figures on each sheet and the motion of
the sheets from a sequence of views of the superimposed
sheets.

Clearly, this model is closely related to the way in which
animated cartoons are made. Viewed in a time-lapse se-
quence, the pictures would form animated silhouettes.
Thus, the model is relevant to many other problems in-
volving motion in scene analysis besides the problem of
tracking cloud motions. Similar models have been used
before in some of the scene analysis literature concerning
line drawings. Specifically, Potter [5] used a two-layer
version of this model in investigating the use of joint mo-
tions to segment a scene of moving, nonoccluding objects,
and Badler [6] used a spherical projection model in devel-
oping a system that produces natural language descriptions
of pictures of known, moving three-dimensional objects.
Of course, all such models are highly idealized, and only a
first approximation to actual imagery. However, even our
simplified model poses problems too difficult to solve by
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mathematical analysis. Our purpose is to understand better
how these problems can be solved before additional com-
plications are introduced.

II. MATHEMATICAL MODEL

The following mathematical model is a slight generaliza-
tion of the transparent sheet model just described. It is
based upon a collection of planar figures moving in several
parallel planes. For simplicity, the shapes of the figures are
restricted to polygons, and the polygons are assumed to be
rigid. Thus, each figure retains its shape and size during
the course of its motion. The polygons are otherwise un-
restricted. In particular, they may have one or more holes
and need not be convex. The motions of the polygons in
a given plane may be correlated or may be independent.
That is, the figures may share a joint motion, or each figure
may have its own linear and angular velocities. It is en-
visaged that there will be several planes and several figures
moving in each plane. Although the present paper con-
centrates on independent motions, the programs generated
are equally applicable to correlated motions. Fig. 1 shows
a simple example in which Plane A contains a single tri-
angle with a rectangular hole and Plane B contains a non-
convex pentagon.

It is assumed that the observer sees a perturbed, parallel
projection of the planes, and is unable to distinguish the
different planes from a single view. To be more specific,
the input picture at any instant in time is taken as the
union of the polygons in the various planes, with the co-
ordinates of the vertices perturbed by the addition of ran-
dom noise. It is further assumtd that the time interval
between successive pictures is sufficiently small that only
"small" changes occur from picture to picture. Fig. 2
illustrates the observer's view of the polygons shown in
Fig. 1.
The objective of the present investigation is to deter-

mine the linear and angular velocities of the figures, and to
decompose the scene into its component figures from a time
sequence of scenes as described above. In the general case,
both the number of planes and the number of polygons in
each plane are unknown to the observer.
The difficulty of this problem in the generaI case will be

apparent from the following sections. Here, some addi-
tional comments on the model are presented to show some
of the considerations involved in its selection. The restric-.
tion of the figures to polygonal shape is motivated by com-
putational convenience. The nature of the study would not
be changed significantly by assuming curvilinear bound-
aries for the figures, but the computational burden would
be severely increased. It is believed that the introduction
of curved boundaries would bring in extraneous issues
without adding significantly to the generality of the
problem.
The assumption that the polygons are rigid is also made

for simplicity. In a more realistic situation, one will en-
counter cases where figures appear and disappear, or
change in size or shape, or both. By adding random noise
to the coordinates, we are in fact allowing small changes

K
Plone A Plane B

Fig. 1. The individual planes.
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Tim

Time2

Plane B
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Union of Two Planes Observed Scene

Fig. 2. Motion as seen by observer.

in size and shape to occur. In addition, this noise precludes
the trivial solutions that can be obtained if the rigid poly-
gons can be observed with unlimited precision. If one as-
sumes that the polygons are obtained by fitting straight
lines to gray scale data, it would be more realistic to model
uncertainty by randomly inserting or deleting certain
vertices. We hope to be able to investigate a more com-
plicated model of this type in the future.

In the present formulation there is no way to tell
whether one plane is occluding or is occluded by another.
This idealization, which is a good first approximation to
the satellite cloud photograph problem, means that no
depth clues are available to aid in resolving the figures.
Inherent in the model is the assumption that there are no
distinguishing features for the various planes. Such fea-
tures do exist in real applications, and their introduction
will certainly make the solution to the problem easier and
not more difficult.

III. THE ANALYSIS PROBLEM

The analysis problem is as follows. Given a sequence of
scenes generated according to the model, find the linear
and angular velocities of the figures and decompose the
scene into its component figures. Although the problem as
posed is essentially mathematical, our approach to its
solution is heuristic and computational. The general prob-
lem can be arbitrarily. complicated, and it is not sensible
to atk for a general solution. However, a reasonably
general and interesting computational solution must take
into account the problems posed by time sampling, over-
lapping figures, topological changes, and uncertainty,
whether due to quantization or noise, and must solve them
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Fig. 3. List representation of a polygon.

under the usual requirements for economy in the use of
time and memory. Some of the various kinds of informa-
tion that can be exploited by the analysis program are

described in this section, starting, for simplicity, with the
noise-free case.

A. The Noise-Free Case
In our computer programs a polygon P is represented

by a list of boundary components-the external boundary
and, if present, the internal or hole boundaries. Each
boundary component is a list of vertices appearing in

counterclockwise order for the external component and in
clockwise order for, the internal components (see Fig. 3).
With this convention, if one follows the edges joining suc-

cessive vertices of a boundary component, then the interior
of the polygon always lies to the left. Finally, a vertex is
described by a pair of coordinates (x,y). From this descrip-
tion, the lengths of the edges, the angles at the vertices,
and other properties of the polygon are readily computed.

Let us temporarily assume that the input scene is free
of noise and that none of the polygons overlap. Then, since
the polygons are assumed to be rigid, the lengths of the
edges and the angles at the vertices will remain constant
as the polygons move. Given two successive scenes of this
type, the only real problem is the identification of cor-

responding vertices. Once any vertex in the first scene is
paired with a vertex in the second scene, all other vertices
for that polygon can pair in only one way, and the two
polygons either will or will not match. While the matching
problem is essentially rather trivial, it raisessomeproblems
that also appear in more complex cases. For example,
multiple solutions can be encountered when there is sym-
metry or several identical figures. More important, when
there are many polygons to match, the straightforward
exhaustive procedures become very inefficient, and the
need for good search strategies becomes apparent.

If two polygons overlap, the resulting polygon will con-

tain two kinds of vertices, vertices from the original poly-
gons and vertices where the polygons intersect (see Fig.
4). For brevity, we call the former true vertices and the
latter false vertices. In the absence of noise, true and false
vertices can be easily distinguished, since the angles at true
vertices stay constant as the polygons move, while the
angles and the lengths of the edges incident on false ver-

tices generally change. Of course, if an angle does not
change, the vertex is not necessarily true, but if an angle
changes then the vertex must be false, and if the length

T

Fig. 4. True and false vertices.

of an edge changes then at least one of the vertices at the
ends of the edge must be false.

This suggests a straightforward way of analyzing noise-
free pictures of moving rigid polygons, provided that the
changes from picture to picture are sufficiently small that
no old vertices disappear and that no new vertices are
formed. One merely pairs vertices as before, demanding a
perfect match for one angle but requiring, say, only a
topological match for the rest of the polygon (same num-
ber of boundary components and the same number of
vertices for each component). If a polygon in the first
scene matches more than one polygon in the second scene,
a criterion function that measures the differences between
corresponding lengths and angles can be used to determine
a best-match solution. A variation of this procedure plays
an important role in the analysis program described in the
next section.
The efficiency and even the accuracy of the search pro-

cedure can be increased significantly by exploiting addi-
tional facts about the problem. For example, if a polygon
has been successfully tracked from one scene to the next,
one can easily estimate its linear and its angular velocities,
and thus predict its location and orientation in the next
scene. Efficiency can be increased by searching for matches
only in the vicinity of the expected vertex locations; ac-
curacy can be increased by including positional errors in
computation of the matching criterion function. For an-
other example, if it is expected that several figures will
share a joint motion, then the accuracy of the velocity
estimates can be increased by clustering. In particular,
when a number of vertices have been paired, angular
velocities can be computed and clustered, using any of a
number of simple one-dimensional clustering procedures.
All vertices belonging to the same polygon must yield the
same angular velocity, of course, as must vertices for
polygons sharing the same motion. If the angular velocity
is zero, then all of these vertices must have the same linear
velocity. More generally, if the angular velocity vector is
to and if the velocity of a vertex located at ri is vi, then the
velocity of a vertex at rj must be vi + Co X (rj- ri). These
relations express the information provided by joint mo-
tions, and should be particularly useful when noise intro-
duces uncertainty.

B. Topological Changes and Noise

When enough time elapses so that old vertices get hidden
and new vertices appear, a general matching strategy be-
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comes much more complicated. Here having good velocity
estimates becomes especially important. If the positions of
all of the polygons in the next scene can be predicted,
then future overlap can be anticipated and properly
taken into account. It is more difficult to anticipate how
or even when two overlapping polygons will separate,
but at least the possibility of matching problems can be
anticipated if some of the vertices are known to be false.
The problems arising because of topological changes are

extemely interesting, but difficult to solve in a way that is
both efficient and general. The nature of the problem
changes with the sampling rate. If the interval between
successive pictures is sufficiently short, topological changes
will occur infrequently, and, although theymay have global
consequences, they can be analyzed essentially locally.
However, there is a tradeoff between the computational
burden of local processing of many pictures taken at short
time intervals and that of more global processing of a few
pictures taken at long time intervals. At present that trade-
off is not well understood. The program described in the
next section takes an essentially local approach, based on
the assumption that topological changes can be treated as
rarely occurring special cases to be considered when the
standard matching procedure fails.
When the vertex locations are perturbed by noise, all

of the angles and edge lengths change at least slightly from
scene to scene. Thus, as long as no old vertices disappear
and no new vertices appear, one can only state the proba-
bility that a vertex is true or false. Of course, with enough
independent observations these probabilities will tend to
certainty, but this is a rather uninteresting result. There
is little need to try to distinguish between a noisy true
vertex and a false vertex that is changing extremely
slowly. For most practical purposes the two figures in-
volved might just as well be treated as one. The main rea-
son for wanting to detect false vertices is to avoid the
serious errors in velocity estimates that can arise when two
or more overlapping figures moving in different directions
are treated as one rigid figure.

Actually, a single scene provides considerable informa-
tion about which vertices are true and which are false.
For example, true vertices are often acute, having an in-
terior angle of less than 1800, while false vertices are often
obtuse. As illustrated in Fig. 4, this is true whether the
angle is on the external boundary or on an internal bound-
ary. In fact, while true vertices need not be acute, false
vertices, with one exception, must be obtuse. The excep-
tion' arises when a false vertex is formed where two true
vertices coincide, as illustrated in Fig. 5. Excluding this
as a probability zero event, we can automatically label
all acute vertices as true vertices. It is also possible in
principle to make more subtle inferences from other geo-
metrical relations. For example, by extrapolating lines
such as the dotted lines in Fig. 4, one can make plausible
conjectures about the composition of the scene. These con-

IFirst pointed out to us by R. Petermann.

7 a

b)(a)
Fig. 5. (a) Normal obtuse false vertex. (b) Acute false vertex

formed by coincidence of two true vertices.

jectures might be rejected after subsequent scenes are
analyzed, but if they are confirmed they might speed the
analysis greatly. However, we have had no experience
with such procedures, and their true usefulness remains to
be seen.

IV. THE ANALYSIS PROGRAM

A. Overview
In this section we describe the major parts of a Lisp

program-implemented by Petermann [7-that analyzes
pictures of moving polygons. The input to the program is
a sequence of scenes So,Si, , ,Sk,.-. where each scene is
a collection of polygons. As the program runs it constructs
and continually refines a model of the component polygons,
including their estimated linear and angular velocities.
This information is the principal output of the program.
In analyzing a new scene and updating the model, the
program has access to the new scene, the immediately
preceding scene, and the current model. Mathematically,
if Mk is the model at time k, then the program computes
Mk+1 as a function of Mk,Sk, and Sk+1.
Although the details of the program occasionally get

rather involved, the overall strategy is straightforward.
The basic operations performed are summarized in Fig. 6.
Because the program begins with no past history of the
motions, the initial procedure for matching the first two
scenes is somewhat different from the strategy for match-
ing subsequent scenes. This latter strategy is the more
significant of the two. It is based on the assumption that
the time interval between successive scenes is so short that
most of the time there will be little trouble in matching a
polygon in scenes Sk with a polygon in Sk+1, there being
only one match that is at all reasonable. On occasion, how-
ever, the matching procedure will fail, primarily because
the way that the figures overlap one another has changed,
resulting in a change in topology. When this happens a
special routine is invoked to identify the type of topological
change that has occurred, and to complete the matching
process.

This is clearly a heuristic strategy. No attempt is made
to guarantee that matches made between successive scenes
are in any sense globally optimal. No provisions for back-
tracking are included to allow the program to recover
from an erroneous match. The primary purpose of the
program is to demonstrate that a fairly simple, computa-
tionally feasible strategy for tracking overlapping figures
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Initialization

1. Read first two scenes, SO and Si.
2 Ma:k acute angles as "True,' obtuse angles

as "Potentially False."
3. Undar the assumption of no topological changes,

match each polygon in SO with a polygon in Sl.
(Failure to find a match causes program termination.)

4. Compute the linear velocities of the vertices and
the angular velocities of the edges.

5. Compare the angular velocities of edges incident
on each "Potentially False" vertex. If the
difference exceeds a preassigned threshold, mark
the vertex as "False".

6. Generate the initial model, splitting off components
bounded by "False" vertices.

Main Loop

7. Read the next scene.
8. For each polygon in the previous scene, attempt a

match.
9. If the match succeeds and if the numbers of vertices

in the two matched polygons are the same, go to Step 13.

Topological Analysis (See Section IV-D)

10. From vertex counts, determine the type of topological
change. (If there was no topological change, the
program fatls at this point.)

11. Locate the vertex which changed its visible/occluded
status.

12. Update the model to account for topological changes.
Model Updating

13. Compute and update the linear velocities of vertices
a-nd the angular velocities of edges.

14. Compare the angular velocities of edges incident on each
new "Potentially False" vertex. If the difference ex-
ceeds a preassigned threshold, mark the vertex as "False."

15. Update the model, splitting off components bounded by
"False" vertices.

16. Go to Step 7.

Fig. 6. Basic steps in the tracking program.

can handle a nontrivial class of problems that frequently
arise.

B. Polygon Matching
The following procedure for matching a polygon P in

Sk with a corresponding polygon P' in Sk+1 is a basic
component of the tracking program. It begins by trying
to pair a vertex V on the external boundary of P with
external vertices of polygons in Sk+1. The vertex V selected
for matching is not crucially important, but two criteria
are used to screen out poor choices. To avoid troubles
with false vertices that might appear, disappear, or change
greatly in angle, a vertex is automatically excluded if its
angle is obtuse. To avoid troubles with multiple matches, a
vertex is excluded if its angle is within 61 of some other
angle on the external boundary of P. If no vertex meets
this latter criterion, as would happen with a square, then
a repeated angle will be selected for matching, but this is
assumed not to be a typical situation. If more than one
vertex passes these tests, the first one encountered is used.

Associated with the vertex V is an estimated velocity
vector v, which initially is zero. The routine uses this
estimated velocity to predict the location of V in Sk+8. In
addition, it uses a radius of uncertainty Ar chosen with
due consideration of velocities, time interval between
successive scenes and the dimensions of the scene. The

list of vertices of the external components of polygons
in Sk+1 is then searched to find a list of candidate vertices
satisfying two conditions.

1) The location of a candidate must be within the
radius of uncertainty of the predicted position of V.

2) The angle of a candidate must be within 62 ( = 61/2)
of the angle at V. The parameters 81 and 82 are
chosen with due consideration of noise.

If no vertex in Sk+1 passes these tests, another vertex on
P is chosen and the process is repeated until either a
match is made or P is declared to be unmatchable. In this
latter case a topological change is presumed to have
occurred, and a special procedure for analyzing topological
changes, described in Section IV-D, is invoked.

If one or more candidates are found, the best matching
one is tentatively selected and a criterion function is
computed that measures the angular and distance errors
encountered in matching all of P with P'. If the resulting
mismatch is below some arbitrary threshold, P is declared
to be matched to P', P is removed from Sk, P' is removed
from Sk+1, the model Mk is updated as described below,
and the next polygon in Sk can be matched against the
remaining polygons in Sk+1. However, if the mismatch
is too great, another candidate is selected and the process
is repeated until either a match is made or P is declared
to be unmatchable. This latter case usually results in an
uncorrectable error, although it sometimes can be handled
by the section of the program that handles topological
changes.
The success of this suboptimal, sequential matching

approach depends to a large extent on the fact that if
fairly good velocity estimates can be obtained then it is
quite unlikely that an incorrect match with a nearby
polygon will yield small errors. In other words, it is im-
plicitly assumed that the scenes contain a fairly heter-
ogeneous collection of polygons rather than a field of
virtually identical figures. If the polygons are quite similar
and if they move appreciably between successive scenes,
then this approach places quite a burden on obtaining
good initial velocity estimates. Such estimates might be
obtained by using a more exhaustive or perhaps an "opti-
mal" matching procedure whenever new figures appear
and good initial velocity estimates must be obtained.2
Another approach is to eliminate the various thresholds
and to use a tree searching procedure rather than a se-
quential procedure during matching, allowing backtrack-
ing and rematching whenever large mismatches are
encountered. We have chosen this faster and simpler
approach because we were more concerned with the prob-
lem of topological changes than the problem of optimal
matching.

C. Updating the Model
A polygon P in scene Sk may, of course, be the union

2 This approach was used in the radar echo tracking program of
Blackmer, Duda, and Reboh [8].
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of two or more component polygons. After P has been
matched with P' in Sk+l, changes in angles and edge lengths
provide evidence about the existence of these components.
The program stores these components, to the extent that
they are known, in a model. In our present program, each
component of P can itself be split into further components
whenever angular changes at pairs of obtuse vertices are
significantly greater than the changes expected due to
noise (see Fig. 7). No provisions are currently made for
rejoining components that might previously have been
erroneously separated. The rationale here is that our chief
concern is to avoid the meaningless results that are ob-
tained when a velocity estimate is computed by averaging
the different velocities of different components of a poly-
gon. If a single polygon is occasionally represented by
several components in our model, the resulting loss in
accuracy in the velocity estimates is not considered to be
as serious a problem.

After a polygon has been separated into components,
the estimates of the velocity for each vertex are updated.
In addition, the angular velocities for the edges of each
component are averaged and used to update the angular
velocity estimate for the whole component. This informa-
tion is then available for clustering to determine the
number of layers, and possibly to reunite incorrectly
separated components, although neither of these opera-
tions has yet been programmed.

D. Topological Changes

When old vertices disappear or new vertices appear, the
matching procedure described above fails and leaves one
or more polygons in Sk unmatched. As was mentioned
earlier, our program tacitly assumes that this is a fairly
rare situation. To be more specific, we assume that the
time interval between successive scenes is sufficiently
short that no more than two components are involved in
any topological change.
Even with this restriction there are a surprisingly large

number of situations that can arise. Consider, for example,
the situation in which a vertex, each of whose incident
edges are visible, passes under the edge of another com-
ponent and becomes hidden. The case that first comes to
mind is when the two components are initially separated
and then come together, as shown in Fig. 8(a). This case
is obviously characterized by the fact that the nuimber
of figures in the scene is different at the two times. How-
ever, there are several other possibilities. Fig. 8(b) and
(c) show that if the components overlap initially then
the penetration of the vertex will create a hole. In Fig.
8(b) the vertex is initially on an external boundary com-
ponent, while in Fig. 8(c) it is initially on an internal
boundary component. Note, however, that we have
tacitly assumed that the vertex is acute. If it is obtuse,
then the components must overlap initially, and although
no new holes are ever formed, a small old hole can dis-
appear. In Fig. 8(d) the vertex is a true vertex on an
external boundary component. In Fig. 8(e) it is a false

(a) (b) (c)
Fig. 7. Detecting components for the model. (a) Polygon at time k.

(b) Obtuse angles that change significantly. (c) The two model
components.

(a) <EIi3;|I1
0

(b) /r, ,/

#. *

(c) 1

(d)

(e)

(f)

(g)

Fig. 8. Cases in which a vertex, both of whose edges are visible,
becomes hidden.
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Case Time k Time k+l n. An% twelve cases. Knowledge of whether the vertex is true or
false can be quite helpful at times, but this information
is not always available, and whenever possible we have

0o :bS : 1 2 tried to avoid depending upon it. Finally, whether the
incident edges are on external or internal boundary com-

Ak>, 4 ponent is primarily helpful in keeping the bookkeeping00 straight in case 2.
4f a < Fig. 9 also shows the change in the number of acute

and obtuse angles, indicated by Ana and Anm, respectively.
1. | o The numbers shown assume that the vertex in question

ka was initially hidden; for the opposite sequence the alge-
braic signs should be reversed. Examination of Fig. 9
discloses that all but two of the twelve resulting cases

10 0
:N,can be distinguished by these gross vertex counts. The

0o 3< two that cannot be distinguished are case lo, in the se-
/1 X quence shown, and case 2o, in the opposite sequence, since

An. = 0 and An. = 1 in each instance. These two cases
I, / in fact cannot be distinguished without knowing which

2a o10 ' -2 vertices are true and which are false, and to establish
T1> this may require waiting several additional time periods, if

it can be done at all.
A/ / There are two reasons for wanting to distinguish be-

20 A 0 tween these various cases. One is to prevent the matching
'h g > 'program from becoming confused by the topological

changes in matching the remaining vertices. The other
Fig. 9. Case analysis for topological changes. is to allow the model updating program to make the

proper adjustments to the model. Fortunately, the in-
vertex on an external boundary component. The two ability to distinguish the two cases mentioned above does
remaining situations arise when the vertex is on an in- not effect the matching procedure. However, it does effect
ternal boundary component, as illustrated in Fig. 8(f) the updating procedure, forcing a postponement of the
and (g). decision as to which model component receives the new
The various cases that can arise can be systematically vertex.

classified using the following criteria.
E. Matching and Updating When Topological Changes

1) Whether the number of visible edges incident on Occur
the hidden vertex is 0, 1, or 2.2)tWhetherdthevertex angle is acuteor2obtuse. In this section we describe briefly the procedure used2) Whether the vertex angle is acute or obtuse.

3) Whether the vertex was inito match vertices when a topological change is known to3) Whether the vertex was initialy hidden and becornes
visible, or .initially visible and becomeshidden. have occurred. The first step is to count the changes An.

and An. in the number of acute and obtuse vertices to4) Whether the vertex is true or false. determine which of the ten distinguishable cases has5) Whether the incident edges are on an external or occurred
an internal boundlary component. Consider first case Oa (see Fig. 9). This case is charac-

The first criterion-the number of visible incident terized by the appearance of a new acute vertex having
edges-provides a simple basic classification. Let case two short incident edges. The two other new vertices
i (i = 0,1,2) denote the situation in which i incident terminating those edges must be obtuse and close together,
edges are visible. These three cases can be further sub- and the two other edges incident on those vertices must
divided according to the second criterion-whether the be collinear. These properties are used by a routine that
vertex angle is acute or obtuse. We denote these subcases searches the boundary components to locate these three
by case ia and case io, respectively. These six cases are new vertices. Once they are located, they are tagged so
illustrated in Fig. 9. Note that case Oo is rather special, that the matching 'program will skip over them as it
since a convex vertex with no visible incident edges occurs matches corresponding vertices at the two times.
only just before a hole is exposed. This general strategy is followed in all of the other cases.

Additional subcases can be distinguished on the basis The vertices that change are characterized, and the figures
of the remaining three criteria. Some of these distinctions are searched to locate the new vertices. Once located, the
are more important than others. For example, the time vertices are tagged so that they will not interfere with the
sequence is certainly important. In Fig. 9 the vertex is matching program, which can then proceed essentially
shown as initially hidden, but Fig. 9 obviously illustrates as if no topological changes had occurred. Case 2 does
the opposite sequence equally well, and in effect shows present some additional difficulties, since corresponding
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vertices at times k and k + 1 can sometimes lie on dif-
ferent kinds of boundary components, external at one
time and internal at another. Fig. 8 illustrates the various
ways that this can occur. However, the difficulties essen-
tially involve care in bookkeeping, and present no funda-
mentally new problems.

V. EXPERIMENTAL RESULTS
The tracking program has been run on a large number

of different problems to verify that the many different
cases involving topological changes are properly treated.
The following two examples are relatively simple cases
that are intended to illustrate the kinds of problems that
the tracking program can handle, rather than to evaluate
the effectiveness of the heuristic parts of the procedure.
The first example is shown in Fig. 10. The objects in

the scene are a large triangle that initially completely
hides a smaller triangle containing a triangular hole. Thus,
this second triangle is not visible in scenes So or Si, and
the initial model, M1, is just the larger triangle. In S3 a
vertex of the obscured triangle appears (case Oa) and
the model M3 shows that this triangle is treated as a
separate component of the scene. Note that when a new
vertex appears in this way, the associated obtuse vertices
are known to be false without the need for computing
angular velocities.
At time 5 a vertex of the hole appears (case Oo). Al-

though in this instance one can logically conclude that the
two edges incident on that vertex must be associated
with the partly exposed triangle, this association is not
made in the model. This is one of many special instances
in which logical inferences could be made to achieve better
performance, but at a cost of greater complexity.
At time 8 a second external vertex of the hidden tri-

angle appears (case la), at time 9 a second internal vertex
appears (case lo), at time 11 the third internal vertex
appears (case 2o), and at time 17 the third external vertex
appears (case 2a). Thus, this simple example involves
all six of the cases listed in Fig. 9. Every one of these events
resulted in a matching failure that had to be corrected by
topological analysis. The final model, M17, looks just like
the corresponding scene, but of course the existence of
two distinct components in the scene was known from
time 3. It is this ability of tha tracking program to decom-
pose the scene that is its most important attribute.
The second example is shown in Fig. 11. It consists of

three figures, two as shown in scene So, and a triangle
with a triangular hole hidden completely by the polygon
on the right hand side. In the following sequence of scenes,
the triangle moves from its initial position to a position
where it is completely hidden by the polygon on the left
hand side. The triangle is never visible in its entirety.
However, the program correctly constructs the description
of the triangle together with that of the hole. In scene
S3 a vertex of the hidden triangle becomes visible, in scene
86 the vertex of the hole becomes visible, in scene 88 one
of the vertices of the triangle gets hidden by the left hand
polygon. These facts are correctly displayed in M8. Even-

tually, in scene Sig, the triangle is completely hidden by
the left hand polygon, and the program has generated
the correct description of the triangle, as shown in model
Mig. The ability of the program to generate the complete
description of objects, from its partial descriptions, is
another important feature of this program.
The examples above are relatively simple in terms of the

number of moving figures. However, the program is
applicable to scenes containing an arbitrary number of
figures and has been successfully run on fairly complex
scenes.

VI. DISCUSSION
We have presented an idealized model of the problem of

analyzing pictures of overlapping layers of essentially
two-dimensional objects. This model is a natural one for
investigating the problem of tracking the motions of
several layers of clouds, and, as was indicated in the
Introduction, undoubtedly has other applications as well.
However, like any model of real phenomena, this one
focuses on certain aspects of the situation and ignores
others. Here the emphasis was on the behavior of joint
motions, shape changes, and false vertex motions that
accompany images of moving occluding objects.
With our model, this was virtually the only kind of

information available for decomposing the scene and
determining the velocities. In most real applications, of
course, much additional information would be available.
For example, in the cloud tracking problem there are
measurable differences in brightness, boundary shape, and
texture between clouds in different layers. In principle, at
least, such additional information should simplify the
problem of decomposing the scene. In the future we hope
to address the question of how such different types of
information can in fact be jointly exploited.
Even within the limitations of the current model a great

variety of problems arise. The model allows both very
simple and arbitrarily complex scenes to be generated.
This makes it difficult to provide an objective evaluation
of any analysis program, for one can always generate
scenes that are within the ability of the program, or that
can overwhelm the program in a variety of ways.

In designing the program described in Section IV we
chose to address some questions and to ignore others.
Specifically, we were primarily concerned with seeing
what was required to match a relatively small number of
overlapping figures when only "small" changes occurred
between successive scenes. The case analysis given in
Section IV shows that even this restricted problem can
involve a surprising variety of situations, but that it does
yield to a systematic approach.
Some of the restrictions on the present program could

be relaxed with relatively little effort. In particular, the
restriction that no more than two components be involved
in any topological change is not essential to our approach.
This restriction was imposed merely to allow the case
analysis to be decided by gross vertex counts. If several
topological changes were allowed between successive
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Fig. 10. Tracking two moving, overlapping triangles.

scenes, more elaborate methods would have to be used to bers of polygons, nonrigid polygons, or polygons whose
localize the troublesome areas, but the procedure would number of sides and/or components could change from
be otherwise essentially unchanged. It would be more time to time. All of these problems present interesting
difficult to change the program to cope with large num- and challenging topics for further study.
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Fig. 11. Tracking three moving figures.
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